首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16843篇
  免费   2822篇
  国内免费   3011篇
化学   13708篇
晶体学   283篇
力学   690篇
综合类   204篇
数学   1677篇
物理学   6114篇
  2024年   23篇
  2023年   316篇
  2022年   475篇
  2021年   598篇
  2020年   694篇
  2019年   728篇
  2018年   615篇
  2017年   677篇
  2016年   875篇
  2015年   940篇
  2014年   1149篇
  2013年   1427篇
  2012年   1752篇
  2011年   1785篇
  2010年   1332篇
  2009年   1204篇
  2008年   1315篇
  2007年   1179篇
  2006年   1074篇
  2005年   809篇
  2004年   582篇
  2003年   455篇
  2002年   520篇
  2001年   479篇
  2000年   324篇
  1999年   297篇
  1998年   171篇
  1997年   151篇
  1996年   122篇
  1995年   110篇
  1994年   82篇
  1993年   84篇
  1992年   63篇
  1991年   52篇
  1990年   36篇
  1989年   45篇
  1988年   27篇
  1987年   25篇
  1986年   27篇
  1985年   18篇
  1984年   6篇
  1983年   8篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1971年   1篇
  1967年   1篇
  1966年   1篇
  1959年   2篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
建立了食品中葡萄糖、半乳糖醇、甘露醇、山梨醇、赤藓糖醇、木糖醇和麦芽糖醇的毛细管电泳-紫外检测同时测定方法。食品中的葡萄糖和糖醇在硼砂碱性介质中与硼酸根结合形成阴离子配合物后,在添加了电渗流改性剂十六烷基三甲基溴化铵的硼砂缓冲液(pH 9.2)中进行快速电泳分离,紫外检测器于195 nm处检测。在优化的条件下,7种物质在12 min内基线分离,标准曲线线性良好(r>0.999),检出限均低于0.1g/L,加标回收率为81.6%~120%,相对标准偏差(RSD)小于6%。方法适用于食品中葡萄糖和多种常见糖醇的同时检测。  相似文献   
992.
利用原子转移自由基聚合(ATRP)方法制备了亲水性嵌段聚合物聚乙二醇-b-聚甲基丙烯酸N,N-二甲氨基乙酯(PEG-b-PDMAEMA),并通过季铵化反应,得到侧链接枝不同单糖分子(葡萄糖、半乳糖、甘露糖)的聚阳离子糖缀物PEG-b-P(DMAEMA-co-DMAEMA-Sac)(Monosaccharide).研究了该聚合物与5,10,15,20-四(对磺酸基苯基)-卟啉(TPPS)在水溶液中的复合自组装行为.研究结果表明,TPPS在该组装体中以J-聚集体形式存在且显示超分子手性特征.手性信号的产生是聚合物侧链糖单元C(4)和C(5)上的羟基与TPPS通过非共价键——氢键相互作用的结果,因此手性信号方向应与糖单元构型有关.通过对比单糖构型发现,具有(4S,5R)构型的糖单元可诱导TPPS产生424 nm正Cotton效应和490 nm负Cotton效应的聚集体,具有(4R,5R)构型的糖单元可诱导TPPS产生424 nm负Cotton效应和490 nm正Cotton效应的聚集体.  相似文献   
993.
利用电化学湿法印章技术在氧化铟锡(ITO)导电玻璃上制备AuPd合金和Au的双组分阵列图案. 采用具有微浮雕图案的琼脂糖印章存储足够多的溶液,并通过控制电沉积的时间来控制图案厚度. 应用场发射扫描电子显微镜(FE-SEM),X射线能谱分析(EDX)和原子力显微镜(AFM)分别对ITO表面上的AuPd合金和Au的形貌和组分进行表征,并通过循环伏安(CV)技术和扫描电化学显微镜(SECM)研究比较了Au和AuPd合金的催化活性. 利用扫描电化学显微镜(SECM)的针尖产生-基底收集(TG-SC)模式和氧化还原竞争(RC)模式,发现Au电极对二茂铁甲醇氧化物(FcMeOH+)电催化还原能力高于AuPd合金电极,而在AuPd合金上催化还原H2O2的能力显著高于Au.  相似文献   
994.
以二水氯化亚锡(SnCl2·2H2O)为盐原料,采用静电纺丝的方法制备了SnO2纳米纤维.为了研究ZnO掺杂对SnO2形貌、结构及化学成分的影响,分别制备了不同含量ZnO掺杂的SnO2/ZnO复合材料.利用热重-差热分析(TG-DTA)、X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱仪、扫描电镜(SEM)及能量色散X射线(EDX)光谱对材料的结晶学特性及微结构进行了表征.制备的SnO2/ZnO复合材料是由纳米量级的小颗粒构成的分级结构材料.ZnO含量不同,对应的SnO2/ZnO复合材料结构不同.表征结果表明ZnO的掺杂量对SnO2材料的形貌及结构均起着重要作用.将制备的不同ZnO含量的SnO2/ZnO复合材料进行气敏测试,测试结果表明,Sn:Zn摩尔比为1:1制作的气敏元件对甲醇的灵敏度优于其它摩尔比的气敏元件.讨论了SnO2/ZnO复合材料气敏元件的敏感机理.同时针对Sn:Zn摩尔比为1:1时表现出最好的气敏响应,分析了其原因,包括Zn的替位式掺杂行为、ZnO的催化作用、过量ZnO对SnO2生长的抑制作用以及SnO2与ZnO晶粒界面处的异质结.  相似文献   
995.
采用程序升温反应法制备了钝化态、还原钝化态和新鲜态Mo2C/γ-Al2O3催化剂,结合原位红外光谱表征技术和反应性能评价,考察、比较了三种催化剂苯加氢反应活性.原位红外光谱结果表明,新鲜态Mo2C/γ-Al2O3催化剂在室温就显示了较好的苯加氢反应活性,表现了类贵金属的催化活性.CO吸附在反应前后新鲜态Mo2C/γ-Al2O3催化剂上的对比结果表明,低价态的Mo位(Moδ+(0δ2))是苯加氢反应活性中心.三种催化剂的反应活性结果表明,新鲜态Mo2C/γ-Al2O3催化剂反应活性最好,催化剂寿命最长,失活之后在500°C下H2处理即可恢复原有活性.  相似文献   
996.
适用于汽油参比燃料TRF的多环芳香烃生成机理   总被引:1,自引:0,他引:1  
构造了一个包括287种组分和1569个反应的汽油参比燃料TRF(toluene reference fuel)燃烧过程中多环芳香烃(PAHs)生成机理的详细化学反应动力学模型,引入四种PAH生长路径将多环芳香烃的生成机理发展到芘A4(C20H12)水平,并通过对PAH产率的分析,指出乙炔(C2H2)、丙炔(C3H3)、乙烯基乙炔(C4H4)以及含有奇数碳原子的环戊二烯自由基(C5H5)和茚基(C9H7)等物质对PAHs生成和生长起到重要作用.该机理可以较准确计算基础燃料(PRF)和TRF火焰的着火延迟期、燃烧火焰中小分子(PAH前驱体C2H2、C3H4等)和PAHs的物质浓度.通过与实验数据的比较表明,该机理在不同温度、压力、化学计量比下具有较好的性能.由此分析,该机理对碳烟前驱物PAHs的预测性能是可靠的.  相似文献   
997.
基于凝胶柱色谱分离技术研究了单分散的单壁碳纳米管(SWCNTs)在不同化学结构多孔多糖凝胶中的流动特性以及对金属型(m-)/半导体型(s-)SWCNTs分离的影响.通过比较SWCNTs在一系列不同孔径的葡聚糖Sephacryl凝胶中的流动行为,发现减小孔径尺寸能够增强s-SWCNTs与凝胶之间的吸附作用力,使大直径的m-SWCNTs快速地流过凝胶颗粒,而选择性地保留了小直径的s-SWCNTs.进一步发现多糖凝胶化学结构比孔径尺寸在SWCNTs的m/s分离中起着更重要的作用.当基于葡聚糖结构的Sephacryl凝胶中的氨基结构被琼脂糖结构所取代时,如Superdex 200和Sepharose 2B凝胶会增强它们与SWCNTs之间的作用力,使SWCNTs的保留时间延长,降低了s-SWCNTs的选择性和纯度.此外,即使拥有与Sephacryl S100类似的孔径范围,当Sephacryl凝胶中的氨基被疏水环氧丙烷基团取代时,葡聚糖凝胶Sephadex G100与SWCNTs的作用力很弱,导致所有SWCNTs快速流动,无法实现SWCNTs的m/s分离.因而,我们认为凝胶孔径和化学结构共同影响并调控了SWCNTs的m/s分离的选择性、纯度以及分离效率.  相似文献   
998.
二环己基-18-冠-6(DCH18C6)可以有效地从高放废液中分离90Sr,对于减小放射性废物的危害和实现高放废物的减容有重要意义.由于在实际应用中DCH18C6处于射线照射下,其结构可能会被破坏并引起络合能力的变化,因此有必要对该配合物的辐射稳定性进行研究.本文合成了Sr(NO3)2?DCH18C6配合物晶体,并通过单晶X射线衍射(XRD)与扩展X射线吸收精细结构谱(EXAFS)等方法进行了表征,确定Sr2+与周围氧原子的配位数为10,Sr―O平均键长约为0.268 nm/0.266 nm(XRD/EXAFS).配位原子来自DCH18C6的六个氧原子以及两个作为双齿配体的硝酸根的四个氧原子.对该配合物晶体在空气中进行γ辐照,EXAFS结果表明吸收剂量为400 kGy时,Sr―O键长及配位数没有发生变化,配位结构没有被破坏,具有很好的耐辐照稳定性.显微红外光谱(Micro-FTIR)结果进一步证明辐照后冠醚环的部分C―H键氧化为羟基或羰基,但并不影响DCH18C6与Sr2+的配位结构.  相似文献   
999.
We report the time‐resolved supramolecular assembly of a series of nanoscale polyoxometalate clusters (from the same one‐pot reaction) of the form: [H(10+m)Ag18Cl(Te3W38O134)2]n, where n=1 and m=0 for compound 1 (after 4 days), n=2 and m=3 for compound 2 (after 10 days), and n=∞ and m=5 for compound 3 (after 14 days). The reaction is based upon the self‐organization of two {Te3W38} units around a single chloride template and the formation of a {Ag12} cluster, giving a {Ag12}‐in‐{W76} cluster‐in‐cluster in compound 1 , which further aggregates to cluster compounds 2 and 3 by supramolecular Ag‐POM interactions. The proposed mechanism for the formation of the clusters has been studied by ESI‐MS. Further, control experiments demonstrate the crucial role that TeO32?, Cl?, and Ag+ play in the self‐assembly of compounds 1 – 3 .  相似文献   
1000.
The ability to engineer and re‐program the surfaces of cells would provide an enabling synthetic biological method for the design of cell‐ and tissue‐based therapies. A new cell surface‐engineering strategy is described that uses lipid‐chemically self‐assembled nanorings (lipid‐CSANs) that can be used for the stable and reversible modification of any cell surface with a molecular reporter or targeting ligand. In the presence of a non‐toxic FDA‐approved drug, the nanorings were quickly disassembled and the cell–cell interactions reversed. Similar to T‐cells genetically engineered to express chimeric antigen receptors (CARS), when activated peripheral blood mononuclear cells (PBMCs) were functionalized with the anti‐EpCAM‐lipid‐CSANs, they were shown to selectively kill antigen‐positive cancer cells. Taken together, these results demonstrate that lipid‐CSANs have the potential to be a rapid, stable, and general method for the reversible engineering of cell surfaces and cell–cell interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号